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1. INTRODUCTION

A weakened form of Whitney’s condition (b) was introduced by K. Bekka and the first author
[B1, BT1, BT2]. It was initially motivated by work of M. Ferrarotti on metric properties of Whit-
ney stratified sets [Fe1, Fe2], and by the observation that the logarithmic or slow spiral has finite
length. These weakly Whitney stratified sets retain many properties of Whitney stratified sets,
including for example the property that any submanifold transverse to a stratum Y is transverse
to all strata in some neighbourhood of Y : this is an easy consequence of Whitney (a)-regularity.
Also Thom’s first isotopy lemma still applies. This requires a delicate adaptation of Mather’s proof
for Whitney stratifications [Ma], which was carried out by K. Bekka in his 1988 thesis [B1] and
published in [B2]. It follows in particular that weakly Whitney stratifications are locally topolog-
ically trivial and are triangulable. They also have many of the same metric properties as Whitney
stratified sets, as shown in [BT3]. Bekka and Trotman, Orro and Trotman [OT1, OT2], Parusinski
[Pa], Pflaum [Pf] and Schürmann [S] have obtained further properties of weakly Whitney stratified
sets.

It was shown in [BT2] that there exist real algebraic varieties with weakly Whitney regular
stratifications which are not Whitney regular. No examples are known among complex analytic
varieties, so that the question arises as to whether the two notions of Whitney regularity and weak
Whitney regularity coincide in the complex case. As a test, it is natural to check the Briançon-
Speder examples of families of complex surface singularities in C3 which have constant Milnor
number but which are not Whitney regular in C4 [BS1]. Calculations by K. Bekka and the first
author show that none of the Briançon-Speder examples (of which there are infinitely many) are
weakly Whitney regular [BT4].

As further evidence that weak Whitney regularity and Whitney regularity might be equivalent
for complex analytic stratifications, or at least for complex analytic hypersurfaces, we show here
that equimultiplicity of a family of complex analytic hypersurfaces follows from weak Whitney
regularity of the family over the parameter space. That equimultiplicity follows from Whitney
regularity was proved for general complex analytic spaces by Hironaka in 1969 [Hi]. In 1976
[BS2] Briançon and Speder gave a different proof, valid for families of complex hypersurfaces
with isolated singularities, and Navarro Aznar generalised their proof to the general complex case
in 1980 [N].

This work was begun at the 2010 singularity theory workshop in Sao Carlos at the University
of Sao Paulo. The first author gratefully acknowledges the support provided by the COFECUB
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Brazil-France research programme. He also thanks W. Kucharz of the Jagellonian University in
Cracow for useful comments.

2. WEAK WHITNEY REGULARITY.

Definition 2.1.
LetX,Y be two submanifolds of a riemannian manifoldM withX∩Y = ∅ and take y ∈ X∩Y .

Condition (a): The triple (X,Y, y) is said to satisfy Whitney’s condition (a) if for each sequence
of points xi of X converging to y ∈ Y such that TxiX converges to τ (in the corresponding
grassmannian in TM ), then TyY ⊂ τ .

Condition (b): The triple (X,Y, y) is said to satisfy Whitney’s condition (b) if there exists a local
diffeomorphism h : Rn → M onto a neighbourhood U of y in M such that for each sequence
of points (xi, yi) of h−1(X) × h−1(Y ) converging to (h−1(y), h−1(y)), such that the sequence
Txih

−1(X) converges to τ in the corresponding grassmannian and the sequence xiyi converges to
` in Pn−1(R), then ` ⊂ τ .

One says that the pair (X,Y ) satisfies condition (a) (resp.(b)) if (X,Y, y) satisfies (a) (resp.
(b)) at each y ∈ X ∩ Y .

Definition 2.2.
Condition (bπ): If π is a local C1 retraction associated to a C1 tubular neighbourhood of Y
near y, a condition (bπ) is obtained from the definition of (b) by replacing the sequence yi by the
sequence π(xi) (cf. [Wh1, Th2]).

It is well-known and straightforward to show that condition (b) implies condition (a) (see [Ma],
or [Wa]). In fact (b) is equivalent to the combination of (a) and (bπ) [NT], which we shall denote
by (a+ bπ). More generally whenever two equisingularity conditions (E1) and (E2) are satisfied
we shall say that (E1 + E2) is satisfied.

We now recall the regularity condition called (δ) introduced by K. Bekka and the first author.
It is a weakening of condition (b).

Definition 2.3. Given a euclidean vector space V , and two vectors v1, v2 ∈ V ∗ = V −{0}, define
the sine of the acute angle θ(v1, v2) between them by :

sin θ(v1, v2) =
‖v1 ∧ v2‖
‖v1‖.‖v2‖

where v1 ∧ v2 is the usual vector product and ‖.‖ is the norm on V induced by the euclidean
structure.

Given two vector subspaces S and T of V define the sine of the angle between them by :

sin θ(S, T ) = sup{sin θ(s, T ) : s ∈ S∗}

where
sin θ(s, T ) = inf{sin θ(s, t) : t ∈ T ∗}.

If πT : V −→ T⊥ is the orthogonal projection onto the orthogonal complement of T , then
sin θ(s, T ) = ||πT (s)||

||s|| . The definition of sine for lines is the same as for vectors : take unit vectors
on the lines.
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One verifies easily that : sin θ(v1, v3) ≤ sin θ(v1, v2) + sin θ(v2, v3) for all v1, v2, v3 ∈ V ∗,
and sin θ(S1 +S2, T ) ≤ sin θ(S1, T ) + sin θ(S2, T ), for subspaces S1, S2, T of V such that S1 is
orthogonal to S2.

Definition 2.4.
Condition (δ): We say that the triple (X,Y, y) satisfies condition (δ) if there exist a local diffeo-
morphism h : Rn −→ M to a neighbourhood U of y in M , and a real number δy, 0 ≤ δy < 1,
such that for every sequence (xi, yi) of h−1(X) × h−1(Y ) which converges to (h−1(y), h−1(y))
such that the sequence xiyi converges to ` in Pn−1(R) and the sequence Txih

−1(X) converges to
τ , then sin θ(l, τ) ≤ δy.

Clearly condition (b) implies (δ) : just take δy = 0.

Definition 2.5. A weakly Whitney regular stratification of a subspace A of a C1 manifold M is a
locally finite partition of A into connected C1 submanifolds, called the strata, such that :

1 ) - Frontier Condition : if X and Y are distinct strata such that X ∩ Y 6= ∅, then Y ⊂ X . X
and Y are then said to be adjacent.

2 ) - Each pair of adjacent strata satisfies condition (a).
3 ) - Each pair of adjacent strata satisfies condition (δ).

In fact the frontier condition turns out to follow from conditions (a) and (δ), in exactly the
same way as it follows from condition (b), because in both cases one is able to apply Thom’s first
isotopy lemma to prove local topological triviality along strata.

Remark 2.6. If π is a local C1 retraction associated to a C1 tubular neighbourhood of Y near
y, a condition (δπ) is obtained from the definition 2.4 of (δ) by replacing the sequence yi by the
sequence π(xi).

Lemma 2.7. (a+ δ)⇐⇒ (a+ δπ).
Proof. Clearly (δ) =⇒ (δπ), so it suffices to show that (a+ δπ) =⇒ (δ). In the definition of (δ)
decompose the limiting vector l as the sum of a vector l1 tangent to Y at y, and a vector l2 tangent
to π−1(y) at y. Then sin θ(l, τ) = sin θ(l1 + l2, τ) ≤ sin θ(l1, τ) + sin θ(l2, τ). By condition (a),
sin θ(l1, τ) = 0, hence sin θ(l, τ) ≤ sin θ(l2, τ) (as we observed above in Definition 2.3) which is
less than or equal to δy by hypothesis, implying (δ). �

It is obvious from the definition of (δ) that (b) implies (a + δ), so justifying the terminology
“weakly Whitney" for (a+ δ). In [BT2] there are real algebraic examples illustrating that (a+ δ)
does not imply (b), and that (δ) does not imply (a). There is currently no example known of a
weakly Whitney regular complex analytic stratification which is not Whitney regular.

3. THE BAD SET OF LIMITS FOR (bπ)-REGULARITY

Let Y = 0n+1 × Cm ⊂ Cm+n+1 and let V be a complex analytic subset of dimension d in
Cm+n+1, with Y ⊂ V and put X := V \Y and Xreg its nonsingular part. Let G denote the graph
in Cm+n+1 × Pn × Grass(d,m+ n+ 1) of the map

Xreg −→ Pn × Grass(d,m+ n+ 1), x 7→
(
xπ(x), TxX

)
.
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Let p1, p2 denote the projections from Cm+n+1 × Pn × Grass(d,m+ n+ 1) to Cm+n+1 and Pn
respectively. We put E := p−11 (0) ∩G. The set

Λπ(X,Y ) := {λ ∈ Pn | ∃ a sequence xi ∈ X such that λ = limxiπ(xi) /∈ limTxiX},
is the bad limit set for (bπ)-regularity. It is related to E by Λπ(X,Y ) = p2(E ∩ B), where
B := {(0, λ, T ) ∈ {0} × Pn × Grass(d,m + n + 1) | λ /∈ T}, hence it is a constructible subset
of Pn. Properties of Λπ(X,Y ) were studied in [NT].

4. MAIN THEOREM.

Let F be an analytic function germ defined on a neighbourhood of 0

F : (Cn+1 × C, 0)× C → (C, 0)
(z, t) 7→ F (z, t)

We denote by π the projection on the second factor, V := F−1(0), Y := {0} × C and

Vt := {z ∈ Cn+1 : F (z, t) = 0}.
Suppose Vt has an isolated singularity at (0, t), i.e. the critical set of the restriction of π to V

is Y. Then X := V \ Y is a complex analytic manifold of dimension n + 1, and for each point
(z, t) ∈ X we have T(x,t)X = {(u, v) ∈ Cn+1 × C |

∑n
i=0 ui

∂F
∂zi

(z, t) + v ∂F∂t (z, t) = 0}. We
set

gradF = (
∂F

∂z0
, . . . ,

∂F

∂zn
,
∂F

∂t
), gradzF = (

∂F

∂z0
, . . . ,

∂F

∂zn
) and ‖gradzF‖2 =

n∑
i=0

‖∂F
∂zi
‖2.

Characterisation of condition (a).
The pair (X,Y ) satisfies Whitney’s condition (a) at 0 iff

lim
(z,t)→0
(z,t)∈X

(
∂F
∂t (z, t)

‖gradF (z, t)‖

)
= 0.

Characterisation of condition (bπ).
The pair (X,Y ) satisfies Whitney’s condition (bπ) at 0 iff

lim
(z,t)→0
(z,t)∈X

( ∑n
i=0 zi

∂F
∂zi

(z, t)

‖z‖‖gradF (z, t)‖

)
= 0.

Characterisation of condition (δπ).
The pair (X,Y ) satisfies condition (δπ) at 0 iff there exists a real number 0 ≤ δ < 1 such that

lim
(z,t)→0
(z,t)∈X

|
∑n

i=0 zi
∂F
∂zi

(z, t)|
‖z‖‖gradF (z, t)‖

≤ δ.

We shall prove our main theorem using this characterisation of (δπ), recalling that weak Whit-
ney regularity is (a+ δ), which is equivalent to (a+ δπ) by Lemma 2.8.
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Theorem 4.1. Weak Whitney regularity implies equimultiplicity for a family of complex hypersur-
faces with isolated singularities defined by F : (Cn+1 × C, 0× C)→ (C, 0).

Proof. Suppose that the multiplicity at z = 0 of the function ft(z) = F (z, t) varies with t at
t = 0. Then there exists an open set U of the Pn of complex 2-planes P containing Y = 0 × C
such that the germ at (0, 0) of P ∩X is a nonempty curve C, where V = F−1(0) andX = V −Y .
It follows from Theorem 3.12 of [NT] or the Proposition proved in [HM] that we may suppose that
each plane P of the open set U is transverse to the limit at 0 of tangent planes toX given by C and
thus will provide a distinct bad limit for Whitney (bπ)-regularity, i.e. an element of Λπ(X,Y ) as
defined above (this uses the hypothesis of weak Whitney regularity, which implies that Whitney’s
condition (a) holds, and uses also that (b) is equivalent to (a + bπ)). It follows in particular that
dim Λπ(X,Y ) = n.

Let now E1 be the fibre over (0, 0) of the closure of the graph of the map taking a point (z, t)

in X to ( z
‖z‖ ,

gradzF
‖gradzF‖ ) in Pn × Pn, as for E in the previous section. Then Λπ(X,Y ) ⊂ p1(E) =

p1(E1), and because dim Λπ(X,Y ) = n, it follows that dim E1 ≥ n.
By proposition 5.1 below, this implies that E1 intersects the diagonal ∆Pn in Pn × Pn.

Lemma 4.2. Suppose that (a)-regularity holds for (X,Y ) at (0, 0). Then E1 intersects the diag-
onal ∆Pn in Pn × Pn if and only if (δ) fails to hold at (0, 0) for (X,Y ).

Proof. Suppose (λ, λ) ∈ E1 ∩ ∆Pn . Then by definition of E1 there exists a sequence of points
(zi, ti) ∈ X such that (zi, ti) → (0, 0) as i → ∞, and both zi

||zi|| and gradzF (zi,ti)
||gradzF (zi,ti)|| tend to λ.

This means that the limit as i tends to∞ of the scalar product of zi
||zi|| and gradzF (zi,ti)

||gradzF (zi,ti)|| is 1, i.e.
the angle between these two unit vectors tends to 0 as i tends to∞.

The hypothesis of (a)-regularity implies that ∂F/∂t
||gradF (zi,ti)|| tends to 0, so that the two sequences

of unit vectors gradF (zi,ti)
||gradF (zi,ti)|| and gradzF (zi,ti)

||gradzF (zi,ti)|| have the same limit λ. Hence

lim
i→∞

(zi,ti)∈X

|
∑n

i=0 zi
∂F
∂zi

(z, t)|
‖z‖‖gradF (z, t)‖

= 1.

By the characterisation of (δπ) above, this implies that (δπ) fails to hold for (X,Y ) at (0, 0),
and so by Lemma 2.8 (δ) fails to hold at (0, 0) for (X,Y ).

The converse, which we do not use, is proved similarly. This completes the proof of lemma 4.2.

By lemma 4.2, the existence of points in E1 ∩ ∆Pn implies the failure of (δ), and hence the
failure of weak Whitney regularity, a contradiction. Thus we have proved that weak Whitney
regularity implies equimultiplicity of the family of hypersurfaces along the t-axis. �

Now we give an application.

Corollary 4.3. For families of plane curves defined by F : (C2 × C, 0) × C → (C, 0), with
Y = 0× C, and X = F−1(0) \ Y , weak Whitney regularity of (X,Y, 0) is equivalent to Whitney
regularity of (X,Y, 0).

Proof. Suppose that weak Whitney regularity holds. Then Bekka’s (C)-regularity holds [B2] and
by a theorem of Bekka, we can apply the Thom-Mather isotopy theorem to prove local topological
triviality [B1, B2]. But locally topologically trivial families of hypersurfaces have Milnor number
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µ constant [Te1]. As shown in [NT], Milnor number constant families cannot have Λπ(X,Y )
of dimension zero, so either Whitney regularity holds and Λπ(X,Y ) = ∅, or Whitney regularity
fails and dimCΛπ(X,Y ) ≥ 1. For families of plane curves, 1 is the maximum dimension, so
that dimCΛπ(X,Y ) = 1. But dimCΛπ(X,Y ) = 1 is equivalent to bcod1 failing by a theorem of
Navarro-Aznar and the first author [NT], and this in turn is equivalent to equimultiplicity failing
in this case. But this is excluded by our theorem, because weak Whitney regularity is assumed to
hold. Therefore Λπ(X,Y ) = ∅, and because (a)-regularity is a consequence of constant Milnor
number [LS], we obtain that weak Whitney regularity implies Whitney regularity. �

This can also be proved by showing that the multiplicity of plane curves is a topological invari-
ant, and thus weak Whitney regularity, implying topological triviality, implies that µ? is constant,
and this implies Whitney regularity (by Teissier [Te1]).

That Whitney regularity implies equimultiplicity has been known since Hironaka’s general
theorem of 1969 [Hi]. This fundamental fact also follows for hypersurfaces from the theo-
rem of Briançon and Speder [BS2], that says that Whitney regularity implies the constancy of
µ∗ = (µn+1, µn, . . . , µ1), as the multiplicity is just µ1; Navarro Aznar extended their proof to the
general complex case [N].

5. CALCULATION OF HOMOLOGY CLASSES

The intersection result used in the proof of Theorem 4.1 is probably well-known and can be
found in [Fu] ((a) in the Theorem on page 28), where it is presented in the more general context of
connectedness results of the type obtained by Fulton and Hansen in [FH]. We thank W. Kucharz
for pointing out this reference. For the convenience of the reader we include a proof.

Proposition 5.1. If V ⊂ Pn × Pn is an algebraic subset such that dim V ≥ n, then V ∩∆ 6= ∅.

Proof. Replacing V by an algebraic subset, it is clearly sufficient to show the result for algebraic
subsets V ⊂ Pn × Pn of dimension n.

Recall that the homology groups of Pn are generated by the classes [Pk], where Pk ⊂ Pn is a
linear sub-space:

H2k(Pn,Z) = Z.[Pk], k = 0, 1, . . . , n

It follows from the Künneth theorem, that

H2n(Pn × Pn,Z) =
n⊕
k=0

Z[Pk × Pn−k]

The homology class [V ] of any algebraic subset V ⊂ Pn×Pn thus can be written in a unique way
as linear combination of the classes [Pk × Pn−k]:

[V ] =

n∑
k=0

ak[Pk × Pn−k]

where the coefficients ak ∈ Z. As the class [Pk × Pn−k] has intersection product = 1 with
[Pn−k × Pk] and = 0 with all other classes, the coefficients ak can be found by intersecting [V ]
with the classes [Pn−k × Pk]:

ak = [V ] • [Pn−k × Pk]
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It follows that ak ≥ 0, as it is an intersection number of two algebraic varieties. Note that not all
ak can be zero, as [V ] 6= 0. A particular class is the class of the diagonal ∆ ⊂ Pn × Pn. As in
projective space Pn a Pk ⊂ Pn and a Pn−k ⊂ Pn intersect in a single point, it follows that

[∆] • [Pn−k × Pk] = 1

and hence

[∆] =
n∑
k=0

[Pk × Pn−k].

It follows that

[∆] · [V ] =
n∑
k=0

ak > 0,

as all ak ≥ 0 and at least one ak 6= 0. It follows that the set V has to intersect the diagonal,
V ∩∆ 6= ∅. �
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